Manual

Perpenso ${ }^{\circledR}$ Calc v1.5.1
 Perpenso ${ }^{\circledR}$ Calc 4 v4.5.1

November 6, 2012

Scientific

Statistics

Business

Hex

Bill / Tip

NOTICE

THIS MANUAL AND ANY EXAMPLES CONTAINED HEREIN ARE PROVIDED "AS IS" AND ARE SUBJECT TO CHANGE WITHOUT NOTICE. PERPENSO LLC MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.

PERPENSO LLC SHALL NOT BE LIABLE FOR ANY ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MANUAL OR THE EXAMPLES CONTAINED HEREIN.

Copyright © 2009-2012 Perpenso, LLC. All rights reserved. Perpenso is a registered trademark of Perpenso, LLC, registered in the U.S.

Apple, iPhone, iPad, iPod touch and App Store are registered trademarks of Apple Inc., registered in the U.S. and other countries.

Perpenso Calc is a paid app and Perpenso Calc 4 is a lite app that is upgradable via In App Purchases. Graphics and text throughout this manual describes Perpenso Calc. Reminders that functionality or features are unavailable in Perpenso Calc 4 without upgrades may or may not be present.
Contacting Perpenso LLC 7
Introduction 8
In App Purchase 21
Display 22
Numeric 22
Annunciators 24
Order of Operations 27
Chain 27
Algebraic 27
RPN 27
Basic Operations 29
Clearing and Deleting 29
Entering Numbers 29
Storing and Recalling Numbers 30
Special Values 30
Special Calculations 31
Basic Arithmetic 31
Chain Mode Only 31
RPN Mode Only 31
Copy and Paste 32
Scientific Operations 34
Fractions 34
Complex Numbers 34
Rectangular and Polar Coordinate Conversion 35
Entering Numbers 35
Displaying Numbers 36
Arithmetic 37
Trigonometry 39
Complex Numbers 40
Fractions 41
Conversions 41
Special Calculations 43
Statistical Operations 44
Entering Data 44
Descriptive Statistics 45
Linear Regression 48
Percentile 49
Probability 49
Special Calculations 52
Worksheet 52
Business / Financial Operations 55
Entering Cash Flows 55
Memory 55
Periods 56
Interest Rate Conversion 56
Percentages 58
Breakeven Point 58
Profit Margin 62
Dependencies for Breakeven and Profit Margin Calculations 66
Time Value of Money 67
Amortization 71
Cash Flows 73
Dependencies for Time Value of Money and Cash Flow Calculations 76
Worksheets 77
Programmer / Hex Operations 81
64-bit and 32-bit Modes 81
Unsigned and Signed Modes 81
Entering Numbers 82
Displaying Numbers 82
Arithmetic 82
Bitwise Operations 82
Shifts and Rotates 83
Text and UTF 84
IEEE Floating Point 85
Dotted Quad 85
Colors 85
Special Calculations 85
Worksheets 86
Bill / Tip Operations 88
Item List 88
Entering Numbers 88
Calculator Tape 90
Copy and Paste 90
Worksheet 90
Calculator Tape 92
Calculator Manual 93
Calculator Settings 94

Contacting Perpenso LLC

To offer suggestions or to receive technical support please email support@perpenso.com. Before doing so please check the Frequently Asked Questions online at http://www.perpenso.com/calc/faq.html, your answer may be a couple of clicks away.

Introduction

Perpenso ${ }^{\circledR}$ Calc is an application for the Apple ${ }^{\circledR}$ iPhone ${ }^{\circledR}$, $\mathrm{iPad}^{\circledR}$ and iPod touch ${ }^{\circledR}$. It is five calculators in one: scientific, statistics, business/finance, hex and bill/tip. All five calculator modes are included, there are no longer any optional modes. Perpenso Calc also includes a calculator tape, worksheets and a built-in manual.

Copy and paste are supported and are convenient ways to transfer data to and from other applications such as Notes and Mail. The numeric value may be a decimal number, a fraction or a complex number in cartesian or polar form.

Perpenso Calc 4 is a related upgradable lite app. Scientific mode is included and the other modes are optional. Lite mode differs from full mode in the following ways:

- It is ad supported
- iPhone: Buttons are slightly reduced in size to make room for ads
- Features/Functionality not available in lite mode:

The calculator tape
RPN entry
Color schemes
iPad: User definable display lines
Future features and functionality added to Perpenso Calc 4 may not be available without upgrades.

Scientific Statistics Business Hex Bill

The current calculator mode is selected using the segmented control on the calculator navigation bar. These modes are not exclusive. No data is lost as modes are changed. Operations from different modes may be combined.

In scientific mode Perpenso Calc is a feature rich calculator that is comparable to traditional handheld calculators. It provides:

- 72 operations (43 complex number)
- Optional RPN entry (except in lite mode)
- Decimal based arithmetic (no binary rounding)
- 20 digit precision (enough for 64-bit arithmetic)
- 10 memory registers
- Fractions
- Complex numbers, cartesian (rectangular) and polar
- 2D rotation
- Scientific and engineering notation
- Unit and time conversions

Perpenso Calc's statistics mode includes:

- 42 operations
- Optional worksheet for data entry/editing and viewing common statistics
- Importing data from the web
- Single and two variable data
- Descriptive statistics
- Linear regression
- Probabilities

While the button based interface of a traditional handheld calculator works well for many things it is awkward for some tasks. Editing data is one such task. Fortunately iOS provides a modern and powerful graphical interface.

Worksheets offer a more natural way to enter, edit and view data and to perform some common calculations. In the statistics worksheet data may be entered and edited in a table. Above this table descriptive statistics such as mean and standard deviation are automatically displayed. In two variable mode a linear regression is also automatically displayed.

In business mode Perpenso Calc offers:

- 53 operations
- Optional worksheets for data entry/editing and performing common calculations
- Breakeven point
- Profit margin
- Time value of money
- Amortization
- Cash flows
- Interest rate conversion
- Running total

Worksheets offer a more natural way to enter, edit and view data and to perform some common calculations. The business worksheets offer breakeven point, profit margin, time value of money, amortization and cash flow functionality.

In breakeven calculations you can set any four of the five variables and calculate the fifth. If profit is set to zero then the calculated quantity is the breakeven point.

Profit margin calculations are a little more restrictive than breakeven calculations. In general a particular pair of variables is set in order to calculate the desired value. For example to calculate price and margin first enter the cost and markup, calculate the price and then calculate the margin.

Time Value of Money (TVM) calculations can solve a wide range of problems. Loans, mortgages, leases, savings, annuities, etc. There are five key variables: number of payment periods, interest per year, present value, periodic payment and future value. Set any four of these variables and the fifth may be calculated. There are also a few prerequisite variables that must be set appropriately: payments per year, interest compoundings per year and payment timing (beginning or end of period).

Once a TVM calculation has been performed the amortization worksheet may be used to see how the remaining balance, principal payments and interest payments change over time. You can also see the amount of interest and principal paid over the life of the loan or during a specific period of time.

In the cash flow worksheet cash flows may be entered and edited in a table. Above this table various prerequisite variable are displayed and may be edited. At the top of the worksheet traditional measurements such as net present value, internal rate of return, payback, etc are automatically calculated and displayed.

In hex mode Perpenso Calc is a valuable tool for programmers. It offers:

- 43 operations
- Optional worksheets for data entry/editing and performing common conversions
- Decimal, hex, octal and binary
-64-bit and 32-bit modes
- Unsigned and signed modes
- Bitwise, shift and rotate operators
- Bit set and clear
- Byte swapping
- UTF-8, UTF-16 and UTF-32 encoding, decoding and conversions
- IEEE single and double precision floating point encoding and decoding
- Dotted quad encoding
- RGBA decoding with a preview of the color

The hex worksheet provides various fields showing how a value may be represented. Edit a value in either the decimal, hex, octal or binary field and the other three fields are automatically updated. An additional UTF-8 field will display a string of characters if the value is a valid UTF-8 encoding. You may also reinterpret values as signed or unsigned or as 64-bit or 32-bit.

In the unicode worksheet you may enter characters in the text field and the various UTF encodings will be automatically displayed. Hex values may be edited in either the UTF-8, UTF-16 or UTF-32 fields and the other fields are automatically updated.

In bill mode Perpenso Calc easily determines the portion of a bill that you are responsible for and an appropriate tip. It allows you to:

- Add items to a scrollable list
- Set item quantity
- Set the percentage of an item that you are responsible for
- Set tax and tip percentage
- Set tax and tip amount
- Split the total
- Send itemized bill to calculator tape (except in lite mode)
- Enter/edit items using a worksheet

The left half of the screen displays a list of items, subtotal, tax, tip, total, etc. The item list always has a column showing the final amount for each item. There are also optional columns showing the price, quantity and the percentage you are responsible for. To enhance readability the optional columns are only shown if they contain nondefault values. The default quantity is 1 and the default percentage is 100%. The list scrolls up and down using flicking gestures.

Price	Qty	$\%$	Amount
12.00	1	25	3.00
15.00	1	100	15.00
5.00	2	100	10.00
Sub			28.00
Tax	8.75%	2.45	
Tip	15.00%	4.20	
Total		34.65	
Split		1	34.65

Optionally specifying the percentage of an individual item that you are responsible for provides functionality that simply splitting the total does not. You may calculate the actual portion of a bill that you are responsible for. For example if you shared an appetizer with three friends, had an entree and two drinks simply enter the full price of the appetizer and your percentage of 25 , the price of your entree and then the price of your drink and a quantity of 2.

The bill worksheet provides a convenient way to enter, edit and view the various bill amounts. At the top of the worksheet the calculated amounts are automatically displayed. Below are editable fields for the tax rate, tip rate, split and item amounts.

On its flip side Perpenso Calc offers a calculator tape, worksheets, a built-in manual and settings controls.

When Perpenso Calc is launched the calculator is shown. Press the info button on the calculator navigation bar to flip to the tape, worksheets, manual and settings.

Done

To flip back to the calculator press the done button on the navigation bar.

To switch between the tape, worksheets, manual and settings press the appropriate button on the tab bar.

In App Purchase

The iPhone operating system provides a feature called "In App Purchase" so that apps may use Apple's App Store to provide additional content or functionality. This is all done from within an app and effectively allows developers to add a built-in mini-store. A ministore offering content or functionality specifically for the app.

The Perpenso Calc 4 app offers the functionality of five specialized calculators: scientific, statistics, business, hex and bill. It is expandable via In-App Purchases. You pay only for the specialized calculator functionality that you need. Scientific functionality is included. Statistics, business, hex and bill functionality is optional.

Note that the Perpenso Calc app includes all five specialized calculators. With its discounted price Perpenso Calc may cost less than adding all your desired functionality to Perpenso Calc 4.

Above Perpenso Calc's numeric display is a segmented control that allows you to select the specialized calculator mode that you wish to use. For modes that are built-in or have been previously purchased you immediately see the appropriate buttons, enabled and ready to use. However if you select an optional mode that has not been previously purchased then an In App Purchase dialog will appear describing the mode and showing its price. If you press the "Done" button the dialog will be dismissed and you will see a preview of the mode. In this preview the buttons are displayed but they are

2nd

 disabled, except for the button that lets you preview secondary functionality. The In App Purchase dialog will only be shown once per app launch. If you wish to see it again quit and relaunch Perpenso Calc.If you select the "Buy Now" button when the In App Purchase dialog is shown then Perpenso Calc turns control over to the iPhone operating system. Dialogs will appear asking you to confirm the purchase and possibly to enter your iTunes username and password. We want to stress that these dialogs do not belong to Perpenso Calc and that we never see your username and password. These dialogs are displayed by and processed by the iPhone operating system.

If you need to restore an optional mode simply go through the purchase process again. Apple's App Store will recognize that you had previously purchased the mode and will not charge you a second time. You may use the "Buy Now" button to restore a specific mode or the "Restore Previous Purchases" button to restore all modes.

Display

Numeric

On an iPhone when the order of operations is set to chain mode there is a single line numeric display. In RPN mode there is a two line numeric display with y (second on stack) above and x (top of stack) below. X and y labels appear to the right of the numbers as reminders. These labels match the use of x and y on buttons.

On an iPad the y value is always shown, like RPN mode on an iPhone device. Additionally there are seven user definable display lines above the x and y lines. These lines may show additional values on the stack, memory registers or special purpose registers for business and hex modes. Labels appear to the left of the numbers to identify the value currently displayed. Tapping on the label will allow you to change the value.

To the left of the regular calculator buttons are a set of buttons that will redefine all the user definable display lines according to a particular theme. Stack, memory, break even point, profit margin, time value of money and hex, octal, binary and unicode conversions.

Annunciators

On an iPhone to the left of the numeric display is a block of six annunciators, two columns with three rows. On an iPad the annunciators are located below the numeric display in a single row. These annunciators change with the calculator mode.

Scientific:

Prefix	Previous Operation
Notation	Pending Operation
Angular Mode	Open Parenthesis

Statistics:

Prefix	Previous Operation
X Data Entered	Pending Operation
Y Data Entered	Open Parenthesis

Business / Finance:

Prefix	Previous Operation
Price Mode	Pending Operation
Begin/End Mode	Open Parenthesis

Programmer / Hex:

Prefix	Previous Operation
Type and Size	Pending Operation
Base	unused

Bill / Tip:

Previous Operation
Pending Operation
Tip Rounding

Prefix indicates that the behavior of the next button is modified. STO - Store.

RCL - Recall.
CAL - Special calculation.
INV - Inverse, also known as arc with respect to trig functions.
HYP - Hyperbolic.
ARH - Inverse Hyperbolic, also known as area hyperbolic.
FIX - Fixed Decimal.
Notation for numeric display.
SCI - Scientific.
ENG - Engineering.
Angular mode identifies the units for trig functions, rotation and complex numbers in polar notation.

DEG - Degrees.
RAD - Radians.
GRAD - Gradians.

Price Mode

BEP - Price will be determined using a breakeven type calculation.
MAR - Price will be determined using a profit margin type calculation.

Beg/End Mode

BEG - Payment at beginning of period.
END - Payment at end of period.
Type and Size.
U64 - Unsigned 64-bit.
S64-Signed 64-bit.
U32 - Unsigned 32-bit.
S32-Signed 32-bit.
Base.
DEC - Decimal.
HEX - Hexadecimal.
OCT - Octal.
BIN - Binary.
Tip rounding.
UP - Automatically increase the tip amount so that the total will be rounded up to a whole number.

Previous operation indicates the last operation actually performed. When in chain mode any pending operation is also displayed. Consider entering $1+2=$. Prior to pressing the equals button the addition is a pending operation. After pressing the equals button the addition is a previous operation.

In general previous and pending operations are similar to the button labels. Some substitutions are made for readability, for example:
/ replaces \div, \div is too easily mistaken for + .
$\pm \%$ indicates percentage rise/fall rather than a normal \%.
${ }^{\wedge}$ indicates an exponent, for example $x^{\wedge} 2$ is x^{2} and $y^{\wedge} x$ is y^{x}.
\rightarrow indicates a conversion, for example cm \rightarrow in is centimeters to inches.

Order of Operations

Chain

Traditional calculators use various order of operations. Common mathematical notation is also known as infix notation. In infix notation the operator appears between two operands, for example $1+2$. Additional operator and operands may be appended to form a chain of operations, for example $1+2 \times 4$. Operators are evaluated from left to right:

$$
\begin{array}{ll}
& 1+2 \times 4 \\
\rightarrow & (1+2) \times 4 \\
\rightarrow & 3 \times 4 \\
\rightarrow & 12
\end{array}
$$

This left to right evaluation is also known as chain ordering. Chain ordering offers simplicity and safety since there is no ambiguity in order.

Algebraic

Some calculators offer an alternative where certain operators have precedence over others. This is known as algebraic ordering. If multiplication has precedence over addition then the prior example is ordered differently:

$$
\begin{array}{ll}
& 1+2 \times 4 \\
\rightarrow & 1+(2 \times 4) \\
\rightarrow & 1+8 \\
\rightarrow & 9
\end{array}
$$

Unfortunately different calculators use different precedence rules, even some calculators from the same company.

RPN

Another alternative is to use postfix notation, also known as Reverse Polish Notation (RPN). In RPN the operator appears after the two operands, for example $12+$.
Additional operands and operators may be appended to form a chain, for example $12+$ $4 \times$, which evaluates from left to right:

$$
\begin{array}{ll}
& 12+4 \times \\
\rightarrow & (12+) 4 \times \\
\rightarrow & 34 \times \\
\rightarrow & 12
\end{array}
$$

In calculators RPN operands are pushed onto a stack (defined below) and more than two may be pushed. When an operator is entered the two most recent operands on the stack are used, consumed, and the result is pushed onto the stack. If 4 is pushed onto the stack, followed by 1 and then 2, and an addition is followed by a multiplication:

$$
\begin{array}{ll}
& 412+x \\
\rightarrow & 4(12+) \times \\
\rightarrow & 43 \times \\
\rightarrow & 12
\end{array}
$$

A stack is a list of values where a value may only be added (pushed) or removed (popped) at one end of the list. This end is known as the top of the stack (TOS).

Perpenso Calc allows many values to be pushed onto the stack. The TOS is often labeled x and the next value y. These match the labels on the calculator buttons. When in RPN mode the calculator display shows these two values with x and y labels as reminders.

When unary operations are performed x is used and popped from the stack. The result is pushed onto the stack and becomes the new x value. If 1 and then 2 are pushed and an x^{2} operation is performed then the stack before and after the operation is:

		Before	After
	y	1	1
TOS	x	2	4

When binary operations are performed x and y are used and both are popped from the stack. The result is pushed onto the stack and becomes the new x value. If 1, 2 and then 3 are pushed and a multiplication operation is performed then the stack before and after the operation is:

		Before	After
		1	
TOS	x	2	1
T	3	6	

The data for more than one operation may be entered before performing the first operation. If 4, 2 and 1 are pushed and then addition and multiplication operations are performed the stack before and after the each operation is:

		Before	After +	After \times
		4		
TOS x	2	4		
	1	3	12	

Basic Operations

Clearing and Deleting

Clear all.
Clears the working registers (display. stack, save/recall, etc.), the data tables (statistics data, cash flows and bill items) or both registers and data. Note that only data tables associated with the current calculator mode are cleared.

CA will only clear the bill items, statistics

For example if you are in bill mode then data and cash flows are unchanged.

CA

may be configured in settings to reset or leave alone the memory registers, payment and compounding periods per year, and hex mode base (radix).

CE
Clear entry.
Normally deletes the current number being displayed. However when the order of operations mode is chain then clear entry may also delete pending operations. For example if $1+2$ is entered then clear entry will delete the number 2 and a new number may be entered. Or clear entry may be pressed a second time to delete the pending addition operation and a new operation may be entered. Or clear entry may be pressed a third time to delete the number 1.

Deletes the last digit of the displayed number. Doing so will enable editing if necessary and you may enter additional digits.

Entering Numbers

Decimal digits.
You may enter numbers with up to twenty digits and a four digit exponent. The number is stored internally at full precision but the actual number of digits displayed is
subject to the precision setting.

Decimal point.
In addition to its use in normal decimal numbers the decimal point is used for the entry of fractions and dotted quads. For fractions place a decimal point between the integer part of the number and the fractional numerator and
between the fractional numerator and denominator. For example enter 1.2.3 for one and two-thirds and .3.4 for three-fourths. For dotted quads place a decimal point between each byte value. For example 192.168.0.1. While fractions will continue to be displayed as fractions, dotted quads will be displayed as their decimal equivalent.

Negate.
\pm
Changes the sign of a number. You need to enter a nonzero digit first since negating zero has no effect. When in entry mode and an exponent is present the exponent will be negated.
If immediately preceded by the [calc] prefix it performs a sign operation returning 1, -1 or 0 for positive, negative or zero values.

Storing and Recalling Numbers

Store, recall.

Store a number into one of ten registers, or recall a number.
and act as prefixes and are immediately followed by a

rcl may also be used to read various variables used in statistics and business modes.

Last result, Last x .
In chain mode last
recalls the result of the most recent calculation. In last
RPN mode recalls the x value immediately before the most recent calculation.

Special Values

There are several special values that may be displayed where numbers are normally displayed. They generally indicate that a calculation has failed.
undef Undefined, a variable does not contain a valid value.
nan Not a number, an unrepresentable value.
inf Infinity.

Special Calculations

Calculate.

calc

The calc prefix changes the operation performed by certain buttons.
performs a sign operation returning 1, -1 or 0 for positive, negative or zero values.

Basic Arithmetic

Percent.
Divides the current number by 100. If immediately preceded by the inverse prefix it multiplies the current number by 100.
When in chain mode and if there is an immediately pending addition or subtraction operation then the normally computed percentage is multiplied by the initial term of the addition or subtraction. This calculates the percentage rise or percentage fall of the initial term. For example $120+10 \%$ has a calculated percentage rise of 12 and an overall result of $132(120+12)$.

Secondary and primary operations.
Redefines buttons to perform different operations.

Chain Mode Only

Parenthesis.
Parenthesis allow you to postpone a pending operation.
Operations inside parenthesis are performed before operations outside. For example if $2 \times(3+1)$ is entered the result will be 8 , the multiplication is postponed. Without parenthesis the result would be 7 .

Equals.
Closes all parenthesis and performs all pending operations.

RPN Mode Only

Drop.
The number on the top of the stack is popped and discarded and other numbers on the stack move towards the top.

Swap XY.

Swaps the top two numbers on the stack while leaving other numbers on the stack unchanged. The top of the stack is considered the x value and the second number on the stack is considered the y value.

Roll up and roll down.
Rolls the numbers on the stack upwards and downwards. Note that only the top two numbers on the stack are displayed.

		Before	After roll up	After roll down
		0	1	3
Bottom		0	2	0
		1	2	1
	y	2	3	2

Enter.
Pushes a number onto the stack, often the first number of a two value
operation. For example in RPN mode $1+2$ is calculated by

Copy and Paste

Copy and paste are convenient ways to transfer data to and from other applications such as Notes and Mail. Double tap on the main numeric display above the calculator buttons to copy or paste a numeric value. The value may be a decimal number, a fraction or a complex number in cartesian or polar form.

Fractions always contain a numerator and a denominator separated by a forward slash, /. There may be an optional whole number before the numerator and the whole number and numerator must be separated by a space. For example one and two-thirds may be represented as " $12 / 3$ " and three-fourths may be represented as $3 / 4$.

Cartesian complex numbers contain two decimal numbers, the real and imaginary components, separated by the sign of the imaginary component. The imaginary component includes a trailing i. Given a real component of 1.2 and an imaginary component of 3.4 the representation would be 1.2+3.4i. Polar complex numbers have
their magnitude and angular components separated by the symbol theta, θ. As a convenience the letter t may be substituted for theta. Given a magnitude of 5.6 and an angle of 45 degrees the representations would be $5.6 \theta 45$ or $5.6 t 45$. By default the angular units are degrees. Degrees, radians and gradians may be indicated by following the angular component with the letters d, r and g. A space must separate the angular component and the unit letter. 5.6t45 may alternatively be represented by " 5.6 t 45 d ", " 5.6 t 0.785398 r" or " 5.6 t 50 g g.

When the calculator is in bill mode a double tap near the bill total allows you to copy the bill.

When the calculator tape is displayed a double tap allows you to copy the tape.

Scientific Operations

Fractions

$12 / 3$
Fractions are generally interchangeable with decimal numbers. Nearly all operators accept fractions and will return a fraction when the operands are fractions.

To enter fractions use two decimal points. One decimal point between the integer part of the number and the fractional numerator and another decimal point between the fractional numerator and denominator. For example enter 1.2.3 for one and two-thirds and .3.4 for three-fourths.

The maximum denominator defined in settings allows you to limit fractions to reasonable values. Fractions with denominators larger than the defined maximum will be displayed as decimal numbers.

Complex Numbers

$1.2+3.4 i \quad 5.6 \theta 45$

Complex numbers are not supported by all operators. The operators that support complex numbers are:

| x^{2} $\sqrt[x]{x}$ y^{x} $\sqrt[x]{y}$
 Square, square root, power and xth root.
 e^{x} In 10^{x} \log
 Natural exponential, natural logarithm, common
 exponential and common logarithm. |
| :--- | :--- | :--- | :--- | :--- | :--- |

Use the number in cartesian form enter the real part, press part. The complex number is displayed as $x+y i$ where x represents the real part and y the imaginary part, for example $1.2+3.4 \mathrm{i}$. To enter a complex number in polar form
θ
enter the magnitude, press , and then enter the angle. The complex number is displayed as $x \theta y$ where x is the magnitude and y is the angle, for example $5.6 \theta 45$.

Rectangular and Polar Coordinate Conversion

There is no explicit coordinate conversion because complex numbers provide the same functionality. Enter your coordinate as a cartesian (rectangular) or polar complex
number and use the complex number in cartesian form, use x for the real part and y for the imaginary part,

Entering Numbers

Begins the entry of an exponent of 10. An e is shown on the display, 1.2 e 3 represents 1.2×10^{3}. Numbers that fit on the display may be shown without an exponent even if they were entered with an exponent, for example 1.2 e3 may be displayed as 1200. To force the use of exponents enable scientific or engineering

Complex number entry, cartesian form. Normally begins the entry of the imaginary part of a complex number. To
enter a complex number enter the real part, press i, and then enter the imaginary part. The complex number is displayed as $x+y i$ where x represents the real part and y the imaginary part, for example $1.2+3.4 \mathrm{i}$.

Abstract

If a complex number in polar form is currently displayed then \quad will convert this number to cartesian form.

If in RPN mode and if the prefix immediately precedes numbers on the stack are popped and used to create a complex number in cartesian form. X is used for the real part and y the imaginary part.

θ
Complex number entry, polar form.
Normally begins the entry of the angular part of a complex number. To enter a complex number enter the magnitude, press θ angle. The complex number is displayed as $x \theta y$ where x is the magnitude and y is the angle, for example $5.6 \theta 45$.

If a complex number in cartesian form is currently displayed then number to polar form.

If in RPN mode prefix immediately precedes numbers on the stack are popped and used to create a complex number in polar form. X is used for the magnitude and y the angle.

Displaying Numbers

Fixed decimal.
The fix prefix is immediately followed by a digit (0-9) indicating the number of digits to display after the decimal point or it is followed by a decimal point to cancel fixed decimal mode. Fixed decimal will always display the designated number of digits and add trailing zeros if necessary. It overrides the precision setting.

Scientific notation.
Toggles scientific notation mode. In scientific notation a number has a single digit before the decimal point and an exponent.

eng

Engineering notation.
Toggles engineering notation mode. In engineering notation a number has one to three digits before the decimal point and an exponent that is a multiple of three.

Arithmetic

trun Discards the fractional digits so that only the integer portion of a number
Truncate. remains. For example the truncation of 123.456 produces 123.

Fractional component.
Discards the integer digits so that only the fractional portion of a number remains. For example the fractional component of 123.456 is 0.456 .

abs

Absolute Value.

Round.
Produces the nearest integer number.

Floor.
[x]
Produces the next smallest integer number.

Ceiling.
Produces the next largest integer number.

Square.

Square root.
If square root is performed on a negative number then the result will be a complex number. For example the square root of -9 is $0+3 i$.

Power.

$x^{\text {th }}$ root.
If y is negative then x must be an odd integer.

Natural exponential
Note that the constant e is easily produced by entering

Natural logarithm (base e).

Common exponential.
10^{x}
Common exponental.
log
Common logarithm (base 10).

1/x Reciprocal.

$x!$
Factorial.
mod
Modulo.

Random.
Produces a pseudo-random number between zero and one.

Trigonometry

inv

Inverse and hyperbolic.
The inverse and hyperbolic prefixes may be used individually or
inv together with the sine, cosine and tangent operations. hyp indicates that the inverse trig function is to be performed and indicates that the hyperbolic trig function is to be performed. For example:

Buttons		Operation
\sin		sine
inv	\sin	arcsine
hyp	sin	hyperbolic sine
inv	hyp	\sin

Degrees, radians, gradians.
Cycles the angular mode between degrees, radians and gradians. If immediately preceded by the calc prefix then the currently displayed number is also converted to the new unit of measurement.

Sine.
\sin
cos
Cosine.
\tan
Tangent.

Complex Numbers

abs

Magnitude.

arg

Argument.

Rotate.
Rotates a point in the complex plane around the origin. The initial term of the rotate operation is a complex number indicating the point in the plane and the second term is a decimal number indicating the angular units (degrees, radians, gradians) to rotate.

Fractions

Fraction.
Attempts to convert a decimal number to a fraction. Some numbers cannot be accurately converted to a fraction and will remain decimal numbers.
If a fraction is currently displayed then $a \frac{b}{c}$ toggles between proper and improper forms.

The maximum denominator defined in settings allows you to limit fractions to reasonable values. Fractions with denominators larger than the defined maximum will be converted to decimal numbers.

Conversions

All conversions may be reversed by immediately preceding the conversion with the
 inverse prefix. For example to convert kilograms to pounds use settings the conversion operations may be set to use US customary, US food nutrition or Imperial units. US food nutrition units are primarily used for labeling.
inch Inch to centimeter.

Mile to kilometer.

```
lb
    kg
```

Pound to kilogram.
$0 Z$ g

Ounce to gram.
gal
Gallon to liter.

```
fl oz
    ml
```

Fahrenheit to Celsius.
hms Hours:minutes:seconds to decimal or degrees ${ }^{\circ}$ minutes' seconds" to dec decimal.

Converts from hexagesimal (H.MMSSsss or D.MMSSsss) to decimal (H.hhh or D.ddd) notation. In hexagesimal notation the hours or degrees are represented by the integer portion of a number (H or D) and the minutes and seconds are represented by the fractional portion. The first two fractional digits represent the minutes (MM, 00-59), the next two digits represent the integer seconds (SS, 00-59) and any additional digits represent the fractional seconds (sss). In decimal notation the fractional digits represent the fractional hours (hhh) or the fractional degrees (ddd).

Examples:

Hours	Minutes	Seconds	Hexagesimal	Decimal
		1	0.0001	0.000277778
		1.25	0.000125	0.000347222
	1	0	0.01	0.016666667
1	2	3	1.0203	1.034166667
11	22	33	11.2233	11.375833333

Special Calculations

Calculate.
The calc prefix changes the operation performed by certain buttons.
calc drg
Cycles the angular mode between degrees, radians and gradians and converts the currently displayed number to the new unit of measurement.

calc

 iRPN mode only. Pops the top two numbers on the stack and creates a complex number in cartesian form. X is used for the real component and y the imaginary component.
calc
θ
RPN mode only. Pops the top two numbers on the stack and creates a complex number in polar form. X is used for the magnitude and y the angle.

Statistical Operations

(Included in Perpenso Calc, optional in Perpenso Calc 4)
Entering Data

Number of variables.
Toggles between single and two variable data modes.
calc
If immediately preceded by the prefix then single variable data will be converted to two variable data. There must be an even number of data items.

data

Enter statistical data.

In single variable mode each use of

data

enters a new x entry.
data
In two variable mode the first use of enters an x entry and a second use enters a y entry. Further use enters x, y pairs as just described.
calc
If immediately preceded by the \quad prefix then the most recent x or x, y pair will be deleted.

Data may also be entered and edited in the statistics worksheet.

Read data from a file.
You may provide a URL to a file to read data from. The file must be a text file containing numeric data only, no labels or comments. Each entry (x or x,y pair) is on a new line and $x y$ data is separated by commas or tabs. Or the data may be a simple list of values separated by spaces. If a simple list is used there is no way to automatically detect two variable data. However this can be worked around by converting single variable data to two variable data using

	Single Variable	Two Variable
Comma Separated Values	X_{1}	X_{1}, Y_{1} X_{2}, Y_{2}
Tab Separated Values	X_{2}	X_{1}
X_{2}	$X_{1} \quad Y_{1}$	
$X_{2} \quad Y_{2}$		
List of Numbers Separated by Spaces	$X_{1} X_{2}$	$X_{1} Y_{1} X_{2} Y_{2}$

Sample files may be found at http://www.perpenso.com/calc/, append one of the following filenames to the preceding URL.

	Single Variable	Two Variable
Comma Separated Values	one.csv	two.csv
Tab Separated Values		two.tsv
List of Numbers Separated by Spaces	one.txt	two.txt

Swap XY Data.
When in two variable data mode swap the x and y entries. The more popular statistical operations can be performed on either the x or y entries. However the less frequently used operations can only be performed on the x entries. If you wish to perform such an operation on the y entries use $\stackrel{\stackrel{x}{\vdots} \not \stackrel{y}{\ddagger}}{\substack{\text { y }}}$ to swap x and y entries, perform the operation, and then swap the x and y entries back.

Number of data entries.
In single variable mode the number of x entries is displayed. In two variable mode the number of x, y pairs is displayed.

Descriptive Statistics

Minimum x .
Determines the minimum of single variable data or the x entries of two variable data.

\max

Maximum x.
Determines the maximum of single variable data or the x entries of two variable data.

Median x.
md
Calculates the median of single variable data or the x entries of two variable data.

Mode x.
mo Calculates the mode of single variable data or the x entries of two variable data. If the data is multimodal an error is indicated and the value shown is the first mode.

Mean x.
Calculates the mean of single variable data or the x entries of two variable data.

Mean y.
Calculates the mean of the y entries of two variable data.

Z-Score.
Determines how far an observation is from mean x .

Weighted mean.
Calculates the mean of x weighted by y.

Geometric mean x.
Calculates the geometric mean of single variable data or the x entries of two variable data.

Sample standard deviation x.
Calculates the sample standard deviation of single variable data or the x entries of two variable data.

Sample standard deviation y.
Calculates the sample standard deviation of the y entries of two variable data.

Population standard deviation x.
Calculates the population standard deviation of single variable data or the x entries of two variable data.

Population standard deviation y.
Calculates the population standard deviation of the y entries of two variable data.

Sample covariance.
Calculates the sample covariance of two variable data.
calc
If immediately preceded by the
prefix then a population covariance is calculated. Many spreadsheets use the population calculation rather than the sample.

Sample Pearson correlation coefficient.
Calculates the sample Pearson correlation coefficient of two variable data.
This is of particular interest in linear regression where it indicates how closely the calculated line fits the two variable data. It is the r in the often used r^{2}.

calc

If immediately preceded by the
prefix then a population correlation coefficient is calculated. Many spreadsheets use the population calculation rather than the sample.

Sum x values.

Sum y values.

Sum xy products.

Sum x^{2} values.

Sum y^{2} values.

Linear Regression

Slope.
Calculates the slope of the linear regression of two variable data.

Y-intercept.
Calculates the y-intercept of the linear regression of two variable data.

Predicted x .
Calculates a predicted x position given a hypothetical y position.

Predicted y.
Calculates a predicted y position given a hypothetical x position.

ssr

Sum of squares due to regression.
sse
Sum of squares due to error.

Also note that the sample correlation coefficient, ${ }^{r_{x y}}$, indicates how closely the calculated line fits the two variable data. It is the r in the often used r^{2}.

Percentile

There is no standard definition of percentile. The U.S. National Institute of Standards and Technology offers calculations that are commonly used in software applications such as spreadsheets and in textbooks, http://www.itl.nist.gov/div898/handbook/prc/ section2/prc252.htm. By default Perpenso Calc uses the spreadsheet style calculation but textbook style is also available via the
calc prefix.

Percentile.
Calculates the $k^{\text {th }}$ percentile of single variable data or the x entries of two variable data. k should be in the range 0 to 100. By default a spreadsheet style calculation is used but note that many spreadsheets expect an alpha value in the range 0.0 to 1.0 rather than k .

If immediately preceded by the
calc prefix then a textbook style calculation is used.

Probability

Combinations.
Determines how many combinations of r members can be selected from a population of n members.

Permutations.
Determines how many permutations of r members can be selected from a population of n members. Number of elements in population.
is used by the binomial and hypergeometric probability functions, If the recall prefix, \quad rcl , is used then the variable is read.

Number of trials.
Sets the variable for the number of trials. This variable is used by the hypergeometric probability function, hgeo
rcl
If the recall prefix, , is used then the variable is read.

Probability of success or number of successful elements.
p_{s}
Sets a variable that contains either the probability of success used by the binomial and geometric probability functions, number of successful elements in the population used by the hypergeometric probability function, hgeo

If the recall prefix,
rcl , is used then the variable is read.

Expected value.
Sets the variable for the expected value. This variable is used by the poisson pois probability function,
rcl
If the recall prefix, , is used then the variable is read.

Geometric probability function.
Calculates the probability of the first success occurring on the $x^{\text {th }}$ trial. This is the non-shifted function supporting $x=0,1,2, \ldots$

Prerequisites: the probability of success variable, $\mathrm{P}_{\mathbf{S}}$, must be set.
Example: Given 0.3 as the probability of success what is the probability of the first success on trial number 5 ?

The probability is 0.07 .

Poisson probability function.
Calculates the probability of x occurrences in an interval.
λ
Prerequisites: the expected value variable, λ, must be set.

Example: Given 10 expected successes what is the probability of exactly 5 successes?

The probability is 0.04 .

bin

Binomial probability function.
Calculates the probability of x successes in n trials.
Prerequisites: the number of trials and probability of success variables,
n_{t} and p_{s}, must be set.
Example: Given 3 trials and a probability of success on any one trial of 0.3 , what is the probability of 2 successes?

The probability is 0.19 .

Hypergeometric probability function.
Calculates the probability of x successes in n trials. The hypergeometric probability function is similar to the binomial probability function except that the trials are not independent and the probability of success changes from trial to trial. Basically selections are removed.
 and number of successful elements in population,

p_{s}

 variables must be set.Example: Given a population of 12 where 5 match the desired criteria, what is the probability of exactly 1 match if 3 are tested?

The probability is 0.48 .

Special Calculations

calc	Calculate. The calc prefix changes the operation performed by certain buttons. calc
nvar	

Worksheet

While the button based interface of a traditional handheld calculator works well for many things it is awkward for some tasks. Editing data is one such task. Fortunately iOS provides a modern and powerful graphical interface.

Worksheets offer a more natural way to enter, edit and view data and to perform some common calculations. In the statistics worksheet data may be entered and edited in a table. Above this table descriptive statistics such as mean and standard deviation are automatically displayed. In two variable mode a linear regression is also automatically displayed.

The calculations shown in the statistics worksheet includes:

Number of observations
Mean
Sample Standard Deviation
Population Standard Deviation
Minimum
Maximum
Median
Slope
Y-Intercept
Covariance
Correlation
R2
SSR
SSE

o
To navigate to the statistics worksheet press the info button on the calculator navigation bar to flip to the tape, worksheets, manual and settings.

Press the worksheets tab.

Done

To flip back to the calculator press the done button on the navigation bar.

Business / Financial Operations

(Included in Perpenso Calc, optional in Perpenso Calc 4)
Entering Cash Flows

Enter cash flow.
Each use of cf
enters a new cash flow group. A group includes a cash flow and the number of times it repeats. By default the repeat value is set to one.
Note that cash flows are numbered beginning with zero. When you enter the first cash flow, often referred to as the initial cash flow, the annunciator will indicate 0 not 1.
calc
If immediately preceded by the
caic prefix then the most recent cash flow group will be deleted.

Cash flows may also be entered and edited in the cash flow worksheet.
Example: Enter the cash flows -1000, 200, 300, 300, 300, 400.

Memory

The M register is a convenient place to maintain a running total. It is unrelated to registers 0 through 9.

$\mathbf{m c}$	M register clear. Stores zero into the M register.
$\mathbf{m -}$	M register subtraction. Subtract a number from the M register.
$\mathbf{m +}$	M register addition. Add a number to the M register.
$\mathbf{m r}$	M register recall. Recall a number from the M register.
Periods	

Payment periods per year.
Sets the payment periods per year and compounding periods per year variables, p / yr and c / yr

Compounding periods per year.
Sets the compounding periods per year variable. Note that the payment
 also sets the compounding periods per year. Its very common for the payment and compounding periods per year to be the same.

However when they differ set compounding,

Interest Rate Conversion
nom
$\%$

Nominal interest rate.
Sets the nominal interest rate variable. Note that the rate is entered as a percentage not a fractional decimal value. A 5% rate would be entered as 5 not 0.05.
 prefix then the nominal interest rate is calculated using the effective interest rate and compounding periods per year variables,

c/yr

Example: What is the nominal interest rate given an effective rate of 10% compounded monthly?

The nominal rate is 9.57 .

Effective interest rate.
Sets the effective interest rate variable. Note that the rate is entered as a percentage not a fractional decimal value. A 5\% rate would be entered as 5 not 0.05.

If immediately preceded by the
calc prefix then the effective interest rate is calculated using the nominal interest rate and compounding periods per year variables, nom \% and c/yr

Example: What is the effective interest rate given a nominal rate of 12% compounded semiannually?

The effective rate 12.36 .

effc
 \%

Effective interest rate with continuous compounding.

Sets the effective interest rate variable. $\begin{gathered}\text { eff } \\ \%\end{gathered}$ and $\begin{gathered}\text { effc } \\ \%\end{gathered}$ represent the same variable, only the calculated values differ. Note that the rate is entered as a percentage not a fractional decimal value. A 5\% rate would be entered as 5 not 0.05 . | If immediately preceded by the \quad prefix then the effective interest rate using |
| :--- |
| continuous compounding is calculated using the nominal interest rate, |
| $\%$ |

Example: What is the effective interest rate using continuous compounding given a nominal interest rate of 11 ?

The effective rate 11.63.

Percentages

\%
 chg

Percent change.
Calculates the percent of change from the initial term to the second term.

Example: If a price rises from 12.50 to 15.00 , what is the percent of change?
1 2 5

\square =

The percentage change is 20 .

Breakeven Point

Fixed cost.
Sets the total fixed cost variable.
If immediately preceded by the calc prefix then the fixed cost is calculated
using the price, variable cost, quantity and profit variables; prc vc qty and prof

Note that profit is total profit not per unit profit.
Example: What is the total fixed cost given a total profit of 250 , a per unit variable cost of 2 , a per unit price of 5 and a quantity of 200 ?

The fixed cost is 350 .

Variable cost. Sets the per unit variable cost variable.

If immediately preceded by the calc
prefix then the variable cost is calculated using the price, fixed cost, quantity and profit variables;

Example: What is the per unit variable cost given a total profit of 250, a total fixed cost of 350 , a per unit price of 5 and a quantity of 200 ?

The variable cost is 2 .

Quantity.
Sets the quantity variable.
calc
If immediately preceded by the
prefix then the quantity is calculated prc fc
using the price, fixed cost, variable cost and profit variables; fc c prof

Note that profit is total profit not per unit profit.
Examples:
What is the quantity given a total profit of 250, a total fixed cost of 350 , a per unit variable cost of 2 and a per unit price of 5 ?

The quantity is 200.
What was the breakeven point?
The breakeven point is where the profit is zero.

The breakeven point was reached at a quantity of 117 (116.67).

Profit.
Sets the total profit variable.
If immediately preceded by the calc
prefix then the profit is calculated
If immediately preceded by the

난prc fc using the price, fixed cost, variable cost and quantity variables; and qty Note that profit is total profit not per unit profit.

Example: What is the total profit given a total fixed cost of 350, a per unit variable cost of 2 , a per unit price of 5 and a quantity of 200 ?

The profit is 250.

Price.
Sets the per unit price variable.
If immediately preceded by the

prefix then the price is calculated using the profit, fixed cost, variable cost and quantity variables;

Example: What is the per unit price given a total profit of 250 , a total fixed cost of 350 , a per unit variable cost of 2 and a quantity of 200 ?

The price is 5 .
Also note that price can be calculated as either a breakeven point type calculation or a profit margin type calculation The type of calculation used depends on whether the most recent variable set is from the breakeven point family or the profit margin family. An annunciator on the display indicates the current calculation mode, "BEP" for breakeven point and "MAR" for profit margin.

Profit Margin

Markup.
mu Sets the markup variable. Note that the markup is entered and displaye as a percentage not a fractional decimal value. A 25% markup would be entered as 25 not 0.25 .

Example: What is the markup given a cost of 10 and a price of $15 ?$

The markup is 50 percent.

Cost.
Sets the cost variable.

If immediately preceded by the
calc
prefix then the cost is calculated using the price variable, prc , and either the markup or margin variable, mu or mar, whichever is not zero.

Examples:

What is the cost given a price of 15 and a markup of 50 ?

The cost is 10 . Note that the margin variable was set to zero to ensure that markup was used in this calculation.

What is the cost given a price of 15 and a margin of 33.33 ?

The cost is 10. Note that the markup variable was set to zero to ensure that margin was used in this calculation.

Price.
Sets the price variable.
If immediately preceded by the
calc
prefix then the price is calculated using
the cost variable, whichever is not zero.

Examples:

What is the price given a cost of 10 and a markup of 50 ?

The price is 15 . Note that the margin variable was set to zero to ensure that markup was used in this calculation.

What is the price given a cost of 10 and a margin of $33.33 ?$

The price is 15 . Note that the markup variable was set to zero to ensure that margin was used in this calculation.

Also note that price can be calculated as either a breakeven point type calculation or a profit margin type calculation The type of calculation used depends on whether the most recent variable set is from the breakeven point family or the profit margin family. An annunciator on the display indicates the current calculation mode, "BEP" for breakeven point and "MAR" for profit margin.

Margin.
Sets the margin variable. Note that the margin is entered as a percentage not a fractional decimal value. A 25% margin would be entered as 25 not 0.25 .

If immediately preceded by the
calc
and price variables, ${ }^{\text {cst }}$ and prc
prefix then the margin is calculated using the cost

Example: What is the margin given a cost of 10 and a price of 15 ?

The margin is 33 percent (33.33).

Dependencies for Breakeven and Profit Margin Calculations

	Operands							
	fc	vc	qty	prof	mu	cst	mar	prc
fc		\checkmark	\checkmark	\checkmark				\checkmark
vc	\checkmark		\checkmark	\checkmark				\checkmark
qty	\checkmark	\checkmark		\checkmark				\checkmark
prof	\checkmark	\checkmark	\checkmark					\checkmark
mu						\checkmark		\checkmark
cst					\checkmark			\checkmark
							\checkmark	\checkmark
mar						\checkmark		\checkmark
prc	\checkmark	\checkmark	\checkmark	\checkmark				
						\checkmark	\checkmark	
					\checkmark	\checkmark		

Time Value of Money

When entering values for variables such as present value, payment and future value
) outputs are negative and inputs are positive. For example money you deposit when opening a savings account is a negative present value but money you borrow is a positive present value.

Begin/End Mode.
Toggles between begin and end modes. This mode determines whether payments take place at the beginning or end of a period.

Number of periods.
Sets the number of periods variable.

If immediately preceded by the
calc prefix then the number of periods is calculated using the interest rate per year, present value, payment, future value,
i/yr
payment periods per year, compounding periods per year and mode variables;

Example: You borrowed 1,000 at 5\% and can make monthly payments of 50, how long will it take to pay back this loan?

If the mode annunciator shows "BEG" then switch to the end of period mode by

The number of periods is 20.93 years.

Number of years.
Sets the number of periods variable,
using the operand multiplied by the payment periods per year variable, p / yr

Any prefixes used with this button will act upon the number of periods button,
Example: Set the number of periods for a 30 year mortgage.

or

ilyr
Interest rate per year.
Sets the interest rate per year variable.
calc
If immediately preceded by the prefix then the interest rate per year is calculated using the number of periods, present value, payment, future value, payment

Example: What annual return do you need in order to double your money in 7 years?
If the mode annunciator shows "BEG" then switch to the end of period mode by

pressingbegin end.
p/yr

7	n	
1	\pm	pv
0	pmt	
2	fv	
calc	i / yr	

The interest rate is 10.41 percent.

Present value.
Sets the present value variable.
If immediately preceded by the calc
If immediately preceded by the

prefix then the present value is calculated using the number of periods, interest rate per year, payment, future value,
payment periods per year, compounding periods per year and mode variables;

i / yr pmt fv p/yr f / yr and | begin |
| :---: |
| end | .

Example: You have secured a 5 year loan at 6\% and you can afford a monthly payment of 400 , what is the maximum that you can borrow (aka the present value)?

If the mode annunciator shows "BEG" then switch to the end of period mode by

The present value is $20,690.22$.

pmt

Payment.
Sets the payment variable.
calc
If immediately preceded by the prefix then the payment is calculated using the number of periods, interest rate per year, present value, future value, payment periods per year, compounding periods per year and mode variables; n i/yr

pv fv, p/yr, c/yr and | begin |
| :---: |
| end |.

Examples:
You have secured a 5 year loan at 6\% and may borrow a maximum of 20,000. What would your maximum monthly payment be?

The payment is -386.66 .
If the loan is compounded quarterly rather than monthly what would your maximum monthly payment be?

The payment is -386.38 .
fv
Future value.
Sets the future value variable.
calc
If immediately preceded by the prefix then the future value is calculated using the number of periods, interest rate per year, present value, payment,
payment periods per year, compounding periods per year and mode variables;

i / yr, pv pmt, p/yr c/yr and | begin |
| :---: |
| end | .

Example: You opened a savings account earning 5\% and you will deposit 100 per month, what will the balance be after 5 years?

If the mode annunciator shows "BEG" then switch to the end of period mode by

The future value is $6,800.61$.

Amortization

Amortization.
Displays the balance, interest portion of the payment and the principal portion of the payment for a single period; or the amount of interest and
principle paid in a range of periods. If a single period has been displayed then may be pressed a second time in order to display the next period.
Prerequisite: A time value of money calculation must have been performed.
Examples:
Start with a payment calculation from a previous example.
If the mode annunciator shows "BEG" then switch to the end of period mode by

The payment is -386.66 .
What is the total amount of principal and interest to be paid?
The range to be used will be 1 through 60, encoded as 1.60 .

The total amount of principal and interest is approximately $-20,000$ and $-3,199$.
What is the amount of principal and interest to be paid during the first year?
The range to be used will be 1 through 12 , encoded as 1.12.

The amount of principal and interest is approximately $-3,536$ and $-1,104$.
What is the amount of principal and interest to be paid in the $23^{\text {rd }}$ month?

The amount of principal and interest is approximately -320 and -67 .

Note that internal calculations are using the rounded periodic payment value and as a result the amortization values are not exact. This is normal and expected behavior. If you would like greater precision then use the fixed decimal
fix
command

Cash Flows

r/yr

Reinvestment rate per year.
Sets the reinvestment rate per year variable.

npv

Net present value.
The net present value is calculated using the cash flows and the payments per year and interest rate per year variables, p / yr and i / yr

Example: What is the net present value given the cash flows $-2000,500,500,5000 ?$

The net present value is $2,624.34$.

Net future value.
The net future value is calculated using the cash flows and the payments per year and interest rate per year variables, \square

Example: After calculating the net present value as shown above, find the net future value.

The net future value is 3,493 .

Payback.
The payback is calculated using the cash flows.

Example: What is the payback period given the cash flows $-2000,500,500,5000 ?$

The payback occurs at 2.2 periods.

Discounted payback.
The discounted payback is calculated using the cash flows and the interest rate per year variable, i/yr

Example: After calculating the payback as shown above, find the discounted payback.

The discounted payback is 2.3014 .

irr
 /yr

Internal rate of return per year.
The internal rate of return is calculated using the cash flows and the payments per year variable,

Example: What is the internal rate of return given the cash flows -4000, 2000, 4000?

The internal rate of return is 28.08.

mirr
 /yr

Modified internal rate of return per year.
The modified internal rate of return is calculated using the cash flows and the payments per year, interest rate per year, and reinvestment rate per year
variables; ${ }^{\mathrm{p} / \mathrm{yr}}$, i/yr and ${ }^{\text {r/yr }}$
Example: After calculating the internal rate of return as shown above, find the modified internal rate of return.

The modified internal rate of return is 23.49.

Dependencies for Time Value of Money and Cash Flow Calculations

	Operands											
	n	i/yr	r/yr	pv	pmt	fv	p / yr	c/yr	cf	beg end	nom \%	$\begin{aligned} & \text { eff } \\ & \% \end{aligned}$
n		$=0$		\checkmark	\checkmark	\checkmark						
		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
i/yr	\checkmark			\checkmark	$=0$	\checkmark	\checkmark	\checkmark				
	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
pv	\checkmark	$=0$			\checkmark	\checkmark						
	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
pmt	\checkmark	$=0$		\checkmark		\checkmark						
	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		
fv	\checkmark	$=0$		\checkmark	\checkmark							
	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		
amrt	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark		
npv		\checkmark					\checkmark		\checkmark			
nfv		\checkmark					\checkmark		\checkmark			
irr							\checkmark		\checkmark			
mirr		\checkmark	\checkmark				\checkmark		\checkmark			
pb									\checkmark			
dpb		\checkmark							\checkmark			
$\begin{gathered} \text { nom } \\ \% \end{gathered}$								\checkmark				\checkmark
$\begin{gathered} \text { eff } \\ \% \end{gathered}$								\checkmark			\checkmark	
effc \%											\checkmark	

$"=0$ " identifies variables holding a value of zero.

Worksheets

In addition to the traditional calculator functionality described above, business worksheets offer a native iOS graphical interface where you may enter and edit data and view some of the more common business calculations. These calculations include:

Breakeven

Fixed Cost
Variable Cost
Quantity
Profit
Price

Profit Margin

Markup
Cost
Margin
Price

Time Value of Money

Periods
Interest per Year
Present Value
Payment
Future Value

Amortization

Total Interest Paid
Total Principal Paid
Interest Paid During a Range of Periods
Principal Paid During a Range of Periods
Balance of an Individual Period
Interest of an Individual Period
Principal of an Individual Period

Cash Flows

Net Present Value
Net Future Value Internal Rate of Return
Modified Internal Rate of Return

Payback

Discounted Payback

To navigate to the business worksheets press the info button on the calculator navigation bar to flip to the tape, worksheets, manual and settings.

Press the worksheets tab.

To flip back to the calculator press the done button on the navigation bar.

Programmer / Hex Operations

(Included in Perpenso Calc, optional in Perpenso Calc 4)

All operations using hexadecimal, octal or binary values are subject to the current integer size (64-bit or 32-bit) and the current integer type (unsigned or signed). Bitwise operations using decimal values are also subject to the current integer size and type. However basic mathematical operations (addition, subtraction, multiplication, division, negation and binary exponential and logarithm) using decimal numbers are not subject to the current integer size or type. These basic operations will behave just as they do when the calculator is in scientific mode. You may reinterpret the current decimal value using the current integer size and type with a

only operates on the current value, it does not complete a calculation like the regular $=$ operator. In RPN mode calc enter provides similar functionality.

A single annunciator indicates both the current integer size and type. "U" and "S" indicate the type and "64" and "32" indicate the size.

64-bit and 32-bit Modes

Perpenso Calc normally uses 20 digit decimal values internally. However when entering hexadecimal, octal or binary values, or when bitwise operations are performed, then 64bit binary values are used internally. 64-bit values represent a smaller range of values than is represented by 20 decimal digits. When 20 decimal digit values are converted to hex, octal or binary then only the 64 low-order bits are used, values wrap around to zero at 2^{64}. For example 2^{64} yields zero, $2^{64}+1$ yields 1 , etc. You may also use a 32 -bit mode where values are limited to 32-bits. When 20 digit decimal values or 64-bit hex, octal or binary values are converted to 32-bit then only the 32 lower-order bits are used, values wrap around to zero at 2^{32}.

int size

Integer size.
Toggles between 64-bit and 32-bit modes.

Unsigned and Signed Modes

The bit patterns of hexadecimal, octal and binary values have both signed and unsigned interpretations. For example 32-bit hexadecimal FFFFFFFF may be interpreted as decimal 4294967295 or -1.

Integer type.
Toggles between unsigned and signed modes.

Entering Numbers

$\boldsymbol{A} \ldots$ … \quad| Hexadecimal digits. |
| :--- |
| You may enter numbers with up to sixteen hex digits (64- |
| bit). |

Displaying Numbers

Base (radix).
Sequence through decimal, hexadecimal, octal and binary modes.

Arithmetic

Binary exponential.

Binary logarithm.

Bitwise Operations

Not.

And.

Or. Exclusive or.

Nand.

nor

Nor.

xnor

Exclusive nor.

bst

Bit set.
bcl
Bit clear.

Byte swap.

Shifts and Rotates

The shift and rotate operations normally take two operands, a value and the number of
\square bits to shift or rotate. However if immediately preceded by the
calc immediately shift or rotate the current value by one bit.

Logical shift left.
shl

shr
 Logical shift right.

sar

Arithmetic shift right.

rol

Rotate left.
ror
Rotate right.

Text and UTF

Text to UTF-8.
Brings up the keyboard so that you may enter characters to convert to UTF-8 coded character sequences. You may enter more than one character but the resulting UTF-8 coded character sequences must total eight or fewer bytes.

utf
 8

UTF-8 to Text.
Interprets a numeric value as UTF-8 coded character sequences and displays the encoded characters.
If UTF-16 or UTF-32 character encodings are currently displayed then the coded character sequences are converted to UTF-8 character encodings. The coded character sequences must total eight or fewer bytes.

utf
 16

UTF-16 to Text.
Interprets a numeric value as UTF-16 coded character sequences and displays the encoded characters.
If UTF-8 or UTF-32 character encodings are currently displayed then the coded character sequences are converted to UTF-16 character encodings. The coded character sequences must total eight or fewer bytes.

UTF-32 to Text.
Interprets a numeric value as UTF-32 coded character sequences and displays the encoded characters.

If UTF-8 or UTF-16 character encodings are currently displayed then the coded character sequences are converted to UTF-32 character encodings. The coded character sequences must total eight or fewer bytes.

IEEE Floating Point

ieee 32

Value to IEEE 32.
If the current value is decimal then the value is converted to its IEEE single precision (32-bit) floating point encoding.
If the current value is hexadecimal, octal or binary then the value is interpreted as an IEEE single precision encoding and converted to a decimal value.

ieee 64

Value to IEEE 64.
If the current value is decimal then the value is converted to its IEEE double precision (64-bit) floating point encoding.
If the current value is hexadecimal, octal or binary then the value is interpreted as an IEEE double precision encoding and converted to a decimal value.

Dotted Quad

Value to dotted quad.
Displays the current value as a 32-bit dotted quad.

Colors

Value to RGBA and color.
Displays the current value as a 32-bit RGBA. RGBA components are shown as floating point values between 0.00 and 1.00.
A rectangle displaying the actual color represented by the RGBA value is shown next to the annunciators. The background of this rectangle consists of a white strip and a black strip, this is to help visualize the alpha component of the color.

Special Calculations

Calculate.
The calc prefix changes the operation performed by certain buttons.

calc

enter

Converts the current value using the currently defined integer type and size.

shl
Logical shift left one bit.
calc
shr
Logical shift right one bit.
sar
Arithmetic shift right one bit.

Rotate left one bit.

calc

```
ror
```

Rotate right one bit.

Worksheets

In addition to the traditional calculator functionality described above, hex worksheets offer a native iOS graphical interface where you may enter and edit data and view some of the more common hex operations.

These operations include:

Hex

Unsigned / Signed
64 Bit / 32 Bit
Decimal Value
Hex Value
Octal Value
Binary Value
UTF-8 Text
Unicode

Text
UTF-8 Hex Encoding
UTF-16 Hex Encoding
UTF-32 Hex Encoding

To navigate to the hex worksheets press the info button on the calculator navigation bar to flip to the tape, worksheets, manual and settings.

Press the worksheets tab.

To flip back to the calculator press the done button on the navigation bar.

Bill / Tip Operations

(Included in Perpenso Calc, optional in Perpenso Calc 4)
Item List

Price	Qty	$\%$	Amount
12.00	1	25	3.00
15.00	1	100	15.00
5.00	2	100	10.00
Sub			28.00
Tax	8.75%	2.45	
Tip	15.00%	4.20	
Total		34.65	
Split		1	34.65

When the calculator is in bill mode the left half of the screen displays a list of items, subtotal, tax, tip, total, etc. The item list always has a column showing the final amount for each item. There are also optional columns showing the price, quantity and the percentage you are responsible for. To enhance readability the optional columns are only shown if they contain non-default values. The default quantity is 1 and the default percentage is 100%. The list scrolls up and down using flicking gestures.

Entering Numbers

Item price.
Enters the price of an item. By default the quantity for this item is one and your share of this item is 100%.

Items may also be entered and edited in the bill worksheet.

Quantities may also be entered and edited in the bill worksheet.

Sets your share of the most recently entered item. For example if you are responsible for 50% of a $\$ 9.95$ item enter:

Percentages may also be entered and edited in the bill worksheet.
tax
Tax.
Sets the tax rate and then the tax amount is calculated using this rate. If the button is pressed a second time then the number is used as the actual tax amount and the tax rate is calculated from this amount. Pressing the button a third time switches back to setting the rate. For example to set the tax rate to 10% enter:

Or to set the tax amount to 1.23 enter:

2 3 tax tax

Tax rates may also be edited in the bill worksheet.

Tip.
tip Sets the tip rate and then the tip amount is calculated using this rate. If the button is pressed a second time then the number is used as the actual tip amount and the tip rate is calculated from this amount. Pressing the button a third time switches back to setting the rate. For example to set the tip rate to 18% enter:

\section*{| 1 | 8 tip |
| :--- | :--- |}

Or to set the tip amount to 5.00 enter:
5 tip tip

Tip rates may also be edited in the bill worksheet.

Round up.
Automatically increase the tip amount so that the total will be rounded up to a whole number.

Split.
Sets the number of people to split the final bill amount between.
The split may also be edited in the bill worksheet.

Calculator Tape

Tape.
Sends the final itemized bill to the calculator tape.

Copy and Paste

A double tap near the bill total allows you to copy the bill.

Worksheet

In addition to the traditional calculator functionality described above, a bill worksheet offers a native iOS graphical interface where you may enter and edit data and view various bill amounts.

To navigate to the bill worksheet press the info button on the calculator navigation bar to flip to the tape, worksheets, manual and settings.

Press the worksheets tab.

To flip back to the calculator press the done button on the navigation bar.

Calculator Tape

(Not available in lite mode)

The tape records the calculations performed.

The trash button on the navigation bar clears the tape.

The buttons on the toolbar allow you to select left or right positioning of operations.

A double tap on the tape entries allows you to copy the tape.

Calculator Manual

A simplified browser based version of this manual that is designed for the iPhone display is embedded into Perpenso Calc.

A pair of arrow buttons on the tool bar allow you to move back and forward through the manual links.

An email support button on the tool bar launches the Mail application and creates a message preconfigured with Perpenso's support email address.

Calculator Settings

The restore button on the navigation bar restores all settings to their default values.

For reference a version number is shown.

Various calculator color schemes are available, except in lite mode. The current scheme is displayed, click on it to bring up a picker to change it.

CA	CE	\bigotimes	inv	hyp	ee
CA	CE	$\boxed{\bigotimes}$	inv	hyp	ee
CA	CE	$\boxed{\mho}$	inv	hyp	ee
CA	CE	\bigotimes	inv	hyp	ee
CA	CE	$\boxed{\bigotimes}$	inv	hyp	ee

The button flash switch enables a visible cue indicating when a calculator button is pressed.

The button click switch enables an audible cue indicating when a calculator button is pressed.

The calculator supports two order of operations modes: Chain and RPN. A check appears next to the current selection. To change the selection tap on the desired order of operations.

CA

The clear all operation, may be configured to reset or leave alone the memory registers, payment and compounding periods per year, and hex mode base (radix).

A precision setting allows you to control the number of fractional digits that are displayed. Only the display is affected, the internal representation of numbers will always use the maximum number of digits possible. The precision setting is overridden by the fixed decimal mode. Fixed decimal mode is similar to precision but fixed decimal will always display the designated number of digits and add trailing zeros if necessary.

fix

Fixed decimal mode is controlled using the mode.

The thousands separator switch allows commas to be used to group integer digits.

Default tax and tip rates are available for bill functionality. Tap on the current value to bring up a picker that will let you change the rate.

The maximum denominator allows you to limit fractions to reasonable values. Fractions with denominators larger than the defined maximum will be displayed as decimal numbers. Tap on the current value to bring up a picker that will let you change the maximum denominator.

The conversion operations may be set to use US customary, US food nutrition or Imperial units. US food nutrition units are primarily used for labeling.

The tape maximum length limits the number of calculator operations that are recorded. Tap on the current value to bring up a picker that will let you change the maximum length.

